Octopus Cells in the Posteroventral Cochlear Nucleus Provide the Main Excitatory Input to the Superior Paraolivary Nucleus
نویسندگان
چکیده
Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds.
منابع مشابه
Alteration of glycine receptor immunoreactivity in the auditory brainstem of mice following three months of exposure to radiofrequency radiation at SAR 4.0 W/kg
The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) rad...
متن کاملRecordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision.
Acoustic information in auditory nerve discharges is integrated in the cochlear nuclei, and ascends through several parallel pathways to higher centers. Octopus cells of the posteroventral cochlear nucleus form a pathway known to carry information in the timing of action potentials. Octopus cells have dendrites oriented to receive converging input from many auditory nerve fibers. In all 34 intr...
متن کاملPhysiological response properties of neurons in the superior paraolivary nucleus of the rat.
The superior paraolivary nucleus (SPON) is a prominent nucleus of the superior olivary complex. In rats, this nucleus is composed of a morphologically homogeneous population of GABAergic neurons that receive excitatory input from the contralateral cochlear nucleus and inhibitory input from the ipsilateral medial nucleus of the trapezoid body. SPON neurons provide a dense projection to the ipsil...
متن کاملPotassium currents in octopus cells of the mammalian cochlear nucleus.
Octopus cells in the posteroventral cochlear nucleus (PVCN) of mammals are biophysically specialized to detect coincident firing in the population of auditory nerve fibers that provide their synaptic input and to convey its occurrence with temporal precision. The precision in the timing of action potentials depends on the low input resistance (approximately 6 MOmega) of octopus cells at the res...
متن کاملTime course and permeation of synaptic AMPA receptors in cochlear nuclear neurons correlate with input.
AMPA receptors mediate rapid glutamatergic synaptic transmission. In the mammalian cochlear nuclei, neurons receive excitatory input from either auditory nerve fibers, parallel fibers, or both fiber systems. The functional correlates of differences in the source of input were examined by recording AMPA receptor-mediated, miniature EPSCs (mEPSCs) in whole-cell voltage-clamp mode from identified ...
متن کامل